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On the nonlinear generalization of the Fock method 
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Lukin Research Instihte of Ftiysieal Problem. Zelewgrad, Mmcow. 103460, Russia 

Received 10 October 1994, in final form 20 F e b w  1995 

Abstract. The generalized Fock method is presented in the case of nonlinear dependence of 
the number-ofquanta operator on the Hamiltonian operator. That generabtion is used for an 
analysis of the inverse problem in the case of sIrict3y discrete spectra in W'. The relalionship 
between the quanmm k n o t i o n  on a basis of the F.xk aPDcmh and the classical limil of this 
description i s  analysed. 

1. Introduction 

Interest in analysis of the Schrijdinger speclral problem and in the search for new classes 
of 'integrable' potentials has quickened considerably in recent years [1,2]. 

To investigate this problem several methods have been used: different advanced 
versions of  the Darboux (factorization) method 13-61 and related approaches, for example, 
a supersymmetry analysis [7-91, an analysis of  higher symmetries of the Scbrodinger 
equation [lo-121, a construction of associated nonlinear algebras [13] and, finally, an 
analysis of q-deformed oscillators [14-18]. 

These investigations have a profound impact on the development of the spectral theory of 
the 'main' operator in fundamental quantum physics-the Schriidinger operator [19-21]-- 
and may serve as a basis for an advancement of approximate methods for solving a number 
of problems of  substantial interest for applications. Note the problem on reconstruction 
of regular potentials with a prescribed s ~ c t l y  point-energy spectrum (for example, with 
a spectrum containing a given set of gaps on the background of a strictly equidistant 
sequence of levels). This problem arises in the development of semiconductor devices 
based on so-called 'nanostructures' (in particular, the quantum wells [22,231). Here an 
analysis of bifurcations of creation and annihilation of energy gaps under changes of potential 
parameters is of certain interest (from the standpoint of widening the scope of the working 
of those devices). 

On the other hand, the methods mentioned above lead to a natural generalization of 
the concept of Fock's creation and annihilation operators (the operators shifting along the 
spectrum) to the case of nonlinear oscillators. This branch attracts particular attention in 
relation to the study of coherent (or squeezed) states in nonlinear quantum optics [24]. 

The basis for our approach is a development of the well-known Fock method in the 
theory of harmonic oscillators [ X I .  This method essentially uses the inkoduction of 
the number-of-quanta operator (hereafter called 'the number operator') N which depends 
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linearly on the Hamiltonian operator H. Our approach is based on the generalization of the 
Fock method to the case of the nonlinear form of this dependence. 

The first version of this approach was presented in [26,27], where it was used mainly 
for an analysis of the problem on reconstruction of potentials (regular in W’ and growing 
at infinities) with prescribed size and location of the unique energy gap on the background 
of the strictly equidistant spectrum. There the number operator N was a polynomial of the 
third degree of H. 

As mentioned in [U] and then studied in detail in our papers [Z8,29], a consequence of 
this approach allows us to obtain potentials with more complicated structure in comparison 
to the class of anharmonic oscillators. In particular, we found the class of potentials with 
the asymptotics 
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having a spectrum which is a strictly equidistant continuation of a triplet of ‘ground’ states 
(in terms of the operator N), shifted arbitrarily relative to each other. 

The latter class was obtained and studied in the remarkable paper 1301 by Veselov 
and Shabat in the framework of an advanced factorization method (the ‘dressing chains‘ 
method). It was shown that such a type of spectrum (a combination of M arithmetic series) 
is valid for the shift operator of arbitrary degree M of the momenta operator. In 1301 it was 
also mentioned that a physical application of such potentials has recently arisen in sbing 
theory. 

An advanced nonlinear generalization of the Fock approach allows the analysis of 
potentials leading to substantially non-equidistant (for example, quadratic) spectra. Another 
spechm type that may be analysed using this method is a discrete spectrum with a finite 
number of levels. 

All the above leads us to the necessity of a presentation of the nonlinear generalization 
of the Fock approach for a more general form of nonlinear dependence of the operator N 
on H. 

Furthermore. one of the important advantages of the approach we propose is 
the possibility of studying both a quantum dynamical system and its classical limit 
simultaneously. In this paper we attempt to expose the nonlinear generalization of the 
Fock approach for both quantum and classical cases in a parallel way. 

The main results of this paper can be formulated as follows. 
(i) It is shown that the specification of a functional dependence of the number operator 

on the Hamiltonian operator for the Schrodinger problem in W’ leads to a one-dimensional 
mapping of its eigenelements. That mapping determines the structure of the energy 
spectrum. 

(ii) The conditions of solvability of equations for generalized creation and annihilation 
operators (the operators of shift along a spectrum) in the case of the natural Hamiltonian 
operator (H = $p2 + U@), x E R’) lead to a nonlinear differential equation for potentials 
U(x) ,  which realize the spectrum of H, determined by the one-dimensional mappings 
mentioned above. 

(iii) Analysis of the relationship between N and H under changes of the structure 
parameters makes it possible to investigate bifurcations of creation and annihilation of 
energy gaps in the spectrum of H and corresponding bifurcations of potential relief. 

(iv) In the classical limit the method we present is directly related to the well-known 
inverse problem of classical mechanics-the problem on reconstruction of a potential using a 
given dependence of oscillation period on energy. In particular, the equation for a quantum 
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potential with quasi-equidistantt spectrum in the classical limit (Ft + 0) reduces to the 
equation for a classical potential. Solving it provides a potential which admits isochronous 
motion in a certain range of parameter values. 

(v) Among all the possible branches of the eigenelements mapping, the unique branch 
survives in the classical limit and, thus, the possibility of existence of multivalued mappings 
disappears by transition from q- to c-numbers. 

The approach described in this paper admits further generalizations related to an analysis 
of the inverse problem for substantially non-equidistant discrete spectra and to the case of 
several degrees of freedom. 

The paper is arranged as follows. In section 2 we expose the generalization of the Fock 
approach to a sufficiently arbitrary form of nonlinear relation between the operators N and 
H. In section 3 this approach is illustrated by the analysis of polynomial relationships of 
these operators. In section 4 the classical limit of this method is considered. Finally, in 
section 5 this classical version of our approach is illustrated, as in the quantum case, by the 
polynomial dependence of the function N ( H )  on the Hamiltonian function. 

2. Nonlinear generalization of the Fock approach: the quantum case 

Let H be a Hamiltonian operator of the quantum dynamical system which has a structure 
that will be defined below. Analogues of the creation and annihilation operators L and Lt 
are defined by the relations 

LL' = N(H) L'L = $(H) (2.1) 

LL' = N ( H )  [ L ,  L'] = A ( H )  A ( H )  I fi - N. (2.2) 

or, equivalently, 

Here N ,  fi are the given functions of the Hamiltonian operator. Moreover, the non-negative 
operator N ( H )  can be treated as an analogue of the number operator [Z]. 

Then we find that 

[ N , L ]  = L A ( H )  [ N ,  L'] = -A(H)Lt .  (2.3) 

A condition of commutation [ N ,  H] = 0 is satisfied if the operators L ,  L f  obey the 
equations 

[ H , L ]  = L s 2 ( H )  [H, L'l = -Q(H)L' (2.4) 

where Q(H).is a Hermitian operator depending on the Hamiltonian operator H. Taking 
into account equations (2.4), equation (2.3) leads to the relation 

N ( H  + S2(H)) - N ( H )  A ( H )  (2.5) 

(see appendix A). By the given dependence of the number operator N on H this 
relation determines a dependence of the characteristic operator G ( H )  on H and on 
the structure parameters of the system. On the other hand, by the given characteristic 
operator Q ( H )  and the function A ( H ) ,  relation (2.5) can be considered as the functional 
equation relative to the operator N ( H ) .  

Let ( E ,  U, $) be an eigenelement of the Schrodinger problem 

H@ = E $  N $  = U@ v > 0. (2.6) 

1 I.e. e i h c  stiiULy equidistant 01 equidistant except for a finite number of arbitrary gaps 
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Then by virtue of relation (2.3) the function V 

Thus, if L$ f 0 then @' is an eigenfunction of the operator N corresponding to the 
eigenvalue U' = u ( E ) + A ( E ) .  Moreover, (E' ,  U', @') is an eigenelement of the Schradinger 
problem (2.6) with the eigenvalue E' determined by the relation 

U' = v (E ' )  = v ( E )  + A ( E )  > 0. (2.8) 
Thus, the action of the operator L on the eigenelements of the Schradinger problem (2.6) 

generates the one-dimensional mapping (U + U', E =$ E', r,b + $' = L@) ,  if problem 
(2.6) is solvable for at least one eigenelement ( E .  U, $). This mapping is to be stopped at 
the nth step if at the (n  + 1)th step U,+I < 0. 

We recall that in the case when N depends linearly on H the ground state of the quantum 
system is defined by the solution of the Schrodinger equation (2.6) corresponding to the 
zero eigenvalue v ( E )  = 0 of the number operator N .  Let us keep this definition and note 
that, generally, the problem 

can be solved for several real roots of the equation u(E0) = 0. This situation is realized, 
for example, in the case when N ( H )  is a polynomial of degree M > 3 in H, 

In other words, the problem on the ground state (2.9) can be degenerated relative to 
the zero eigenvalue of the operator N .  Each of the roots of the equation u(E0) = 0 is the 
ground state for its own subsequence of the eigenvalues of the operator H generated by 
the shift operator L. Each of these subsequences can contain either a finite or an infinite 
number of elements. Combinations of these subsequences determine the possible spectrum 
of the operator H .  

Furthermore, the sequence function associated with the L-mapping and given in implicit 
form by the relation (2.8) can be multivalued at some values of the structure parameters. 

It is directly related to the fact that relation (2.5) in the general case determines several 
characteristic operators Q ( H )  and, as a consequence, a corresponding number of roots of 
equation (2.4). However, only one characteristic operator (and corresponding branch of the 
multivalued sequence function) does not disappear by going to the classical limit (E +. 0). 
In reality, as will be shown later, the clwsical analogue of relation (2.5) determines a unique 
characteristic function S 2 ( H ) ,  where H is a classical Hamiltonian function. 

This important feature of the generalized Fock approach is a consequence of a number 
of facts. By the given functions ( N ,  A) and the corresponding spectrum of H ,  the solu~ions 
of equation (2.4) determine pairs of operators (U, L )  for different branches of multivalued 
(in the general case) mapping. For the branch that has the classical analogue the problem 
can be solved for a scalar wavefunction and for the Hamiltonian operator of the natural form 
( H  = f P Z  + U). For other branches the condition of solvability in R' can be realized for 
wavefunctions and Hamiltonian'operators of a more complicated nature. In particular, by the 
values of structure parameters leading to multivaluedness of the one-dimensional mapping 
of the eigenelements, the corresponding Schrijdinger problem in W' becomes solvable when 
we introduce pseudo-spin degrees of freedom. 
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L@ obeys the equation 
N$' = ( u ( E )  + A(E))@'  = U'@'. (2.7) 

H@o Eo$o N@o = 0 U(&) = 0 (2.9) 

3. The case of polynomial relations between the number operator and the 
Hamiltonian operator 

As an example confirming the statements presented in the previous section, let us consider 
the case when the operators N ,  fi depend on the Hamiltonian operator H nonlinearly as 
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polynomials of the third degree. 

Here (Nm, fim) are the structure parameters of the system. In this case equation (2 .5) ,  which 
determines the characteristic operator Q(H), takes the form 

N3Q3 + ( N z  + 3N3H)QZ + ( N I  + 2 N z H  + 3 N 3 H Z ) Q  = A0 + A l H  + A 2 H 2 +  A 3 H 3  

(3.2) 
where Aj f i j  - N j .  Depending on the values of the structure parameters, equation (3 .2)  
specifies no more than three real characteristic operators. Let these values be such that 
Q1,  Qz, S23 are solutions of equation (3 .2) .  Then the equations 

[ H , L ] = L Q j ( H )  j =  1 , 2 . 3  (3 .3)  
determine, in the general case, three (U ,  L)-pairs of operators and three branches of L- 
mapping: 

L ( j )  : + ~U1q;)  E X  + ~ y : ~  = E;> + n I (E,) (3 .4)  
@') 5 0 "(E;;,) 2 0 j = 1 , 2 , 3  

Here 
3 

v ( E )  = x N m E " .  (3.5) 
m a  

Remark. Note that by the given dependences N ( H ) ,  k ( H )  one can write an equation for 
determining the ( H ,  L)-pair that has a more general structure in comparison with (3.3),  if 
one requires the commutation condition [ H ,  NI = 0. For example, in the case when the 
operators N ,  fi are polynomials of the third degree of H ,  this equation has the form 

3 N 3 K ' H 2 + ( 2 N z K 1 + 3 N 3 K Z ) H + ( N ~ K 1 +  N z K 2 +  N3K') 
= L ( A o f A 1 H  + A z H Z + A 3 H 3 )  

where K' are recurrent commutators: KO [U,  L], K'+' = [U,  K ' ] ,  i > 0. However, we 
are not aware of any methods for solving this equation, apart from the use of relation (3 .3)  
that reduces (3 .6)  to (3 .2) ,  which makes this generalization a formal one. 

Let us consider the case that one of the characteristic operators (for example, Q,) does 

[ H ,  L ]  = wL w QI = constant (3 .7)  
determines the ( H ,  L)-pair of operators and the L-mapping on the equidistant part(s) of the 
spectrum of H (the same equation was obtained by the 'dressing chains' method in 1301). 

&+I = E, + U  v(E.) > 0 v(E,+I) > 0. (3.8)  

not depend on H .  In this case the equation 

The corresponding sequence function has the form 

Such a situation is realized when the structure parameters obey the relations 

A o = N i w + N z ~ ~ t N 3 ~ ~  A I  = 2 N 2 0 + 3 N 3 w ~  
A2 = 3N3w (3.9) A3 = 0. 
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If the ground state defined by problem (2.9) is non-degenerate in terms of the operator 
N (i.e. the structure parameters are such that the equation v (E0)  = 0 possesses a unique 
real root), then the sequence function (3.8) determines a strictly equidistant spectrum of H. 

If the ground state is degenerate in the operator H and [ E t ) ,  E$), E:)) is a triplet of 
eigenvalues of H corresponding to the zero eigenvalue of N ,  then the sequence function 
(3.8) defines tbe following two types of general structure of the spectrum H. 

(i) The spectrum of H consists of two equidistant groups of levels. The lower grou 
is built by the L-mapping of the lowest eigenvalue of H among ‘the ground triplet’ Ed cf , 
the mapping is stopped at the nth step due to the condition v,+l = 0. Thus, the lower 
group contains a finite number of levels. The top, unbounded above, countable group of 
levels is separated from the lower one by a gap. The size of the gap in the general case is 
incommensurable with the step (equal to w )  in the equidistant parts of the spectrum. The 
location of the gap in the equidistant spectrum is determined by values of the structure 
parameters of the system. 

(ii) The spectrum of H is an equidistant continuation (with step w)  of the triplet of 
ground states ( E t ’ ,  E:’, Eh3)] (this case was also studied in [30]). 

The following choice of the structure parameters corresponds to the case considered in 
[26] and other papers: 

No = -o(CI + 0’) - C2 
Nz = -120 

N I  = Z(Ci + 3w’) 
N ,  = 8. 

Here (Cl, Cz) are the values of the two integrals 1271 

c, = x ( - ~ v , , , + 3 ( v ~ ) , + 2 ( w x ) ~ V , ) + ~ V , ,  I -3vz (3.10) 

c2 = -- [-svzx + 3v2 + Cl) + $ ( V X ) 2  - v3 - CLV (3.11) 1 1 2 

4(wx)? 

of the equation for the potential V = U ( x )  - ( 0 x ) ~ / 2  

zv,,,, I - ;(vz),, - (wx)2V,, - 3w2xvx = 0. (3.12) 

Expression (3.1 1) may also be considered as a differential equation of the second degree 
with two structure parameters. Note another convenient form of equation (3.1 1) as a system 
of two non-autonomous equations of the first degree is 

~ ( v , ) 2 = w ~ ( x V - w ) 2 + V 3 + C I V + C Z  w, = v .  (3.13) 

Equation (3.12) was derived in our previous papers [26,27] as a condition for solvability 
of the overdetermined system of linear equations for coefficients of the polynomial 

3 
L ( p , x )  = C L m ( x ) P m .  (3.14) 

fll=O 

(This system arises by solving (3.7) if one uses the form (3.14) for the shift operator L.)  
A direct analogue of that equation was found in [l I ]  in the theory of higher symmetries 

of the Schrodinger equation. In the theory of ‘dressing chains’ a relationship of such 
equations with the Painlev6 transcendens was established by Veselov and Shabat [30]. 

In [26,27] we presented some results on the structure of the spectrum of the Schriidinger 
problem for some explicit solutions of equation (3.12) which were found using the Darboux 
method at certain values of the structure parameters. 

The method proposed in this paper makes it possible to determine completely the 
structure of the specmm of the Hamiltonian operator associated with solutions of the 
equation (3.12) regular in R’, and to investigate the bifurcations of the creation (annihilation) 
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of a gap on the background of an equidistant spectrum. Expressions (3.8) at CI > 0, taking 
into account (3.9, lead to the sequence function 

(3.15) En+] = En + 0 
u(E,) = (2E, - w)’ + Ci(2E. - W )  - Cz > 0. 

Here the ground state Eo(C1, C,) is unique, and the L-mapping is definite (one-valued) and 
determines the unbounded sequence of energy eigenvalues given above . The spectrum of 
H is a strictly equidistant one with distance between levels equal to U .  

If CI < 0 then the condition u ( E )  = 0 determines, in the general case, the Oiplet of 
ground states [ E t ) ,  Ef), E:’) and in addition the sequence function is multivalued, i.e. at 
E; - w / 2  f on the equidistant branch (3.15) a pair of new branches arises: 

(3.16) 

Multivaluedness is excluded if L obeys equation (3.7). 
The structure of the spectrum of H depends on the parameters Cj, C2 as follows [28]: 

on the half-plane (CI < 0. Cz), a countable set of bounded regions exists where the spectrum 
is an equidistant continuation (with step w )  of the triplet of ground states. These regions are 
bounded by the ordered set of curves where an equidistant spectrum with gap is realized. 
The location of the gap (i.e. the number of levels in the lower equidistant part) is equal to 
the number of the curve. These curves can be found explicitly from the condition needed for 
the eigenvalue of N to be zero at the nth step of the L-mapping. Namely, the nth mapping 
of the initial point E!) = Ef’(C1, CZ) leads to u(E,)  = 0 on the family of curves: 

(3.17) 27 C,” = -4[C1 + 4(wn)ZIZ[C1+ (on)Z] n = 0,1,2, . . . . 
Here the energy of the ground state is 

(3.18) 

Numerical simulation, as well as analysis on the basis of Darboux transformations, showed 
that such a structure of the spectrum is realized on symmetric potentials regular in IR‘ with 
asymptotics lim,,*,(U(x) - ( w ~ ) ~ / 2 ]  = 0 and a finite number of local minima of the 
function V ( X )  (their number linearly depends on the number of the curve (3.17)). Note that 
in the case of symmetric potentials it is convenient to go from the parameters CI and CZ 
to the ‘natural’ parameters of the potential U0 = U(0)  and U2 5 U,,(O) using the relations 

(3.19) 

Then, for the case of symmetric potentials, expression (3.17) gives, apart from the line of 
harmonic oscillator (n = 0), two alternating sets of half-lines and half-parabolas in the plane 
[Uo, UZ] ,  corresponding to the families of potentials that provide equidistant spectra with 

U:’ = -12onUo - oZ(8n2 - 1) (3.20) 

UZ ( z ) - 9 U 2 - w z ( 2 n z - 1 )  - 3  0 U , < - $ w ( n - Z )  n = l , 3 ,  .... (3.21) 

The lower equidistant part of the spectrum contains n levels and the energy of the ground 
state (3.18) is written as 

Cl = +[UZ - 0 2 1  -SUO” c, = -U; - CIUO. 

gap P81: 

U0 > -$w(n + 1) n = 2,4,. , . 
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The size of gap AE varies continuously along the curves from zero (at the starting point) 
to infinity: 

(3.24) 
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A:) = $U0 + o ( n  + 1) 

AE - -i 0 - p ( n  - 2) 
(see figure 1). An example of such a potential is presented in figure 2. 

n = 2.4, ... 
(3.25) (2) - 3 1 n = 1 ,3 , .  . . 

Figure 1. Change of energy levels along the cwes (3.17) for the first two c w e s  (n = 1.2). 
As a pyameter on the curves a value of U, = U(0)  is chosen. 

Figure 2. An example of a potential with a strictly equidistant spCcWm except for a single gap. 
The lower pan of the spectrum consists of four levels. 

A detailed analysis of bifurcations of symmeeic potentials in the quantum dynamical 
system under consideration is presented in [31]. 

The spectra that have the form of the equidistant continuation of the triplet of ground 
states are realized in potentials with asymptotics as given in the introduction. An example 
of this type of potential is shown in figure 3. If the parameters (CI, Cz) vary in such a way 
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that the corresponding point (initially located inside one of the bounded regions) moves 
towards the bounding curve (3.17), then the distance between two (of three) ‘ground’ states 
of the spectrum decreases, so that at the curve two related equidistant sequences of levels 
merge and disappear (figure 4). 

Figure 3. An example of a potential corresponding to the ‘triplet’ spectrum. 

1 N=6 E.0. (N=O) 

Figure 4. Transformation of energy levels by movement on the plane (Cr. Cz) from one curve 
((3.17). n = 3, the righbhand broken vertical line) to the next curve ((3,17), n = 5. the left- 
hm3~ broken vertical line) across the two bounded regions associated with the ‘triplet’ spectrum. 
These hvo regions make conlact at the unique point (the middle verlical line) that belongs to 
the line n = 0 (the harmonic oscillator). In  the ‘natural‘ parameten Ihis passage is equivalent 
to the segment U ( 0 )  = -413. -17 c w ‘ U z ~ ( 0 )  c 15. The full circles depict energy levels at 
the bounding curves. 

Remark. Numerical simulations show that for non-symmetric potentials with different 
kinds of asymptotics at the left and right infinities the spectrum of H can be an infinite 
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equidistant continuation of two 'ground' states only. 
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A definition of operators N ,  fi in the form of polynomials of higher degree may lead 
to an increase in the number of arbitrarily located gaps in an equidistant spectrum and to 
spectra formed by equidistant continuation of multiplets of ground states. 

Note that the problem of reconstruction of quantum dynamical systems (i.e. finding 
( H ,  L)-pairs of operators) in RI for multivalued L-mappings requires the introduction of 
pseudo-spin degrees of freedom (extension of the class of dynamical syslems). In the case 
when the sequence function leads to cycles of finite degree (and, correspondingly, to spectra 
containing 6nite number of levels) the problem may be required to pass on to shift operators 
L, L f  that are matrices of finite range. The question of solvability of the problem remains 
open in the case that the sequence function has stable and unstable stationary points. 

4. The classical analogue of the generalized nonlinear Fock approach 

Consider the classical analogue of the method described above. For a classical Hamiltonian 
system with one degree of freedom let us introduce a complex function L ( x ,  p )  defined by 
the relations 

LL* = N ( H )  {L. L*] = i6(H). (4.1) 

Here N ( H ) , 6 ( H )  are given real functions of H ( H  being the Hamiltonian function) and 
(., .} is a classical Poisson bracket. Note that in the quantum case this definition of the 
function L corresponds to the definition of the operator L by relations (2.2) (obviously an 
analogue of definition (2.1) cannot be used because LL' L*L). 

By virtue of (4.1) we find that 

( H ,  L] = -i- L = iS2(H)L.  
a N / a H  

In the action-angle variables ( J ,  p) equation (4.2) takes the form 

and leads to the evident solution 

(4.2) 

(4.3) 

The function L defined by solution (4.4) is a function of the state of the Hamiltonian 
system if it is 2r-periodic in the angle variable p and if N ( H )  > 0. Let these conditions 
be satisfied. Then 

6 ( H )  N ( H ) > O .  
aH - = Q ( H )  -- 
a J  BNIBH 

Taking into account that 

J = i n  p d x  $ 
we write relation (4.5) in the form 

(4.5) 

(4.6) 
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For the natural Hamiltonian system, p = J2(H - U ( x ) )  and so relation (4.6) can 
be treated as the integral equation of the inverse problem of classical mechanics which 
determines the potential U ( x )  from the givcn dependence of period T on energy [32]. 

Thus, equations (4.1) or (4.2) are directly related to the inverse problem of mechanics. 
One can treat the mapping ( x ,  p )  -+ ( L ,  L') as a transition to a new representation where 
a state of the dynamical system on the complex plane L is determined by a rotating vector; 
its length and constant angular velocity are defined by the functions of energy N and S. 

5. The classical analogue of the description in the polynomial case 

For dynamical systems leading to isochronous oscillations, n ( H )  = w = constant. In 
this case for the class of Hamiltonian functions H = p z / 2  + CJ(x), equation (4.2) admits 
solutions in the class of polynomials of the form 

M 

Lee, P) = Lm(x)pm M > 1. (5.1) 
m=O 

Substitution of this expression into equation (4.2) generates an overdetermined system of 
linear equations in the functions L,(x) ,  m < M. The condition of solvability for this 
system leads to a nonlinear equation for the potential U ( x ) .  Its solutions contain the class 
of isochronous potentials. 

As in the quantum case, we consider the problem of M = 3 and find that the solution 
of equation (4.2) is 

L ( x ,  p )  = p3 + i(wop2 + [3v + ( w t ) z ~ p  + i 1 3 ~  + (w t )21 [ ;$  + u t ] .  (5.2) 

Here t = ( x  - xo), V(c) = U ( c )  - A - (14)~/2, A = constant, and the equation specifying 
a necessary class of potentials is 

d2V dV 
3- v- + (wE)2- + 3w 6- = 0. 

d t  ( :) dF2 d t  
This equation possesses the integral 

dV 
d t  

i V z  - [3V + ( O ~ ) ~ I $ -  = -C1/2 2 

and has the two-parametric family of solutions 

(5.3) 

(5.4) 

Note that expressions (5.3H5.5) may also be obtained by formal transition (k -+ 0) to 
the classical limit from the corresponding quantum equations (3.10)-(3.12) though, in the 
general case, such a procedure should be used with precautions. 

Simple calculations show that, in accordance with the original general relations (4.1). 
LL' E N ( H )  = N3H3+ N2H2+ N I H  + No 
[ L ,  L*) 3 S ( H )  = d2H2 + d l H  + 6 

where the structure parameters are determined by the expressions 

82 = 3 u "  61 = 20Nz 60 = U N !  
N3 = 8 N2 = -24A N I  = -2Ci + 24A2 (5.7) 
No = -Cg + 3ClA + 8A3. 
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(Here A is the constant of potential renormalization in (5.2).) 
We now describe a slructure of potenti& of the family (5.5). All the definite solutions 

(5.5) intersect the axis t = 0 at one of two points U ( 0 )  = &U0 + A ,  where U0 = m, 
and the value of Cz (an analogue of the quantum second integral) is a parameter of the family. 
This family (5.5) is presented in figure 5. The condition LL* N(H) > 0 is satisfied 
everywhere, and N 0 on the curves U =: Vo + (w6)’/2 + A and U = (@.5)’/6 + A.  

Figure 5. A hmiiy of potentials ajmitthg isochronous motion in the classical case. The bold 
horizontal segments give examples of orbits in two different regions of isochronous motion. 

Note that among this family there are only two potentials which are regular on the whole 
line-the harmonic oscillators U = &Uo +. (4) ’ /2  + A .  In the limit case C1 = 0 another 
harmonic oscillator exists: U = (wt)’/lS, which is an analogue of the same quantum 
solution (it corresponds to the zero value of the constant in the asymptotics presented in 
section 1). Other solutions have a break at the point e = 0. However, among the potentials 
that are defined on the half-line .5 > 0 we can single out groups of potentials admitting 
a finite motion in a certain range of energy. It is remarkable that this motion is strictly 
isochronous (i.e. its period does not depend on energy) in that range of energy values (see 
figure 5). 
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Appendix A. 

One can easily obtain equation (2.5) using a representation of N in the form 

N ( H )  = / d r  N(t)exp(iHr) 
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and taking into account that 
C o .  

IT 
Iexp(iHT), LI = -l(K + H)" - LH"}. 

n!  "=O 

Here 
K O = L  K ' - [ H , L I  K * F [ H , [ H , L I ]  ,... 
K" = [H,[H,. . .IN, L ]  . . .I].  - -  " n 

By virtue of equations (2.4) the recurrent commutators K" are determined by the 
relations K" = LQ"(H) .  Hence, 

when using the representation of N in the integral form given above, and leads to the 
expressions 

and to the possibility of the extension of the definition of the characteristic operator Q(H) 
by relation (2.5). 

[exp{iHr}, Ll + L(exp(i(H + Q)r]  - exp(iHr1) 

L D ( H ,  Q) = O  D 3 N(H + S I )  - N(H) - A ( H )  
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